di Antonio Parrella
Il progetto di ricerca “Sinergy – Covid” dell’Università della Campania “Luigi Vanvitelli” ha creato un sistema di elaborazione dati per la “predizione” dell’evoluzione clinica e del rischio di mortalità per Covid-19 e per altre epidemie di ambito respiratorio.
“Mentre combattevo con il Covid tra la vita e la morte, nell’isolamento di un lettino di ospedale, ho speso tutte le mie energie per pensare a cosa si potesse fare per affrontare future pandemie ed epidemie con strumenti di previsione dei rischi più incisivi per ogni singolo paziente”.
Ludovico Docimo (nella foto di copertina), direttore del Dipartimento Medico-Chirurgico ad Alta Specialità dell’Università degli Studi della Campania “Luigi Vanvitelli” e presidente eletto della Società Italiana di Chirurgia, racconta così la genesi del progetto “Sinergy Covid”, che ha messo l’intelligenza artificiale al servizio dello studio predittivo delle evoluzioni della malattia da Covid-19 anche come paradigma di altre malattie respiratorie.
I risultati del progetto sono stati presentati in anteprima nazionale stamane nel complesso di Sant’Andrea delle Dame dell’Università degli Studi della Campania “Luigi Vanvitelli”, alla presenza, tra gli altri, del direttore generale Prevenzione del Ministero della Salute, Francesco Vaia (nella foto in basso con Ludovico Docimo).
Era fine Marzo 2020 quando il prof. Docimo fu ricoverato d’urgenza presso l’Ospedale Cotugno di Napoli. Era la fase iniziale e più drammatica dell’emergenza Covid-19 in Italia, quella in cui si combatteva un virus ancora poco conosciuto e c’era un altissimo tasso di mortalità. “In quei dieci giorni di ricovero – racconta Docimo – ho visto morire più di un paziente, ho temuto per la mia vita, ho pensato alla mia famiglia ma ho anche cercato di concentrarmi sulle mie esperienze medico-scientifiche da mettere al servizio di emergenze simili”.
In questo modo è nata l’idea del progetto “Sinergy Covid” che all’inizio del 2022, con il coordinamento scientifico di Ludovico Docimo, ha riunito gli stessi attori della felice esperienza nata nel 2017 con il progetto “Synergy: Ricerca e Digital Solution per la lotta alle patologie oncologiche”: il Dipartimento di Scienze Mediche e Chirurgiche Avanzate dell’Università della Campania “Luigi Vanvitelli”, la Bollino IT Spa (con il coordinamento dell’AD Ruggiero Bollino), che da oltre 10 anni è un’impresa di eccellenza per lo sviluppo di soluzioni software per la sanità pubblica e privata e il CINI, il Consorzio Interuniversitario Nazionale per l’Informatica (con il coordinamento di Stefano Marrone), che rappresenta oggi in Italia il principale punto di riferimento della ricerca accademica nazionale nei settori dell’informatica e dell’information technology.
“Già l’esperienza dell’utilizzo dell’intelligenza artificiale in ambito oncologico – ricorda Docimo – ci aveva dato notevoli risultati. Abbiamo realizzato sistemi apparentemente complessi, ma molto semplici nella pratica clinica, che consentono oggi una diagnostica molto precoce, prima ancora che compaiano i sintomi (prevenzione di secondo livello) di una serie di tumori dell’apparato digerente, della tiroide, della mammella, del polmone e del melanoma”. Sulla scia di quel lavoro pluriennale il progetto “Sinergy Covid” ha raccolto numerose informazioni dalle schede dei pazienti campani affetti da Covid-19 incrociando i dati clinico-anamnestici, i dati laboratoristici e le risultanze della diagnostica per immagini (TAC toracica con mezzo di contrasto).
Questo lavoro, che ha visto il contributo dei docenti dell’Università Vanvitelli (Cappabianca, Coppola, Parmeggiani, Reginelli e Sagnelli) e dei medici dell’Ospedale Cotugno (Fiorentino e Polistina) ha permesso di sviluppare un CAD (un sistema informatico basato su reti neurali artificiali) in grado di agevolare la diagnosi e di fornire, già dalle prime fasi di ricovero, importanti informazioni sull’evoluzione della patologia con una precisione e accuratezza predittiva con valori compresi tra il 75-78%, e con una capacità di prevedere la dimissione del paziente (utile anche per l’ottimizzazione del lavoro del sistema sanitario ospedaliero) compresa in un intervallo di 5-7 giorni, fino ad uno scettro di precisione di 2-3 giorni.
“In particolare – rivela Docimo – abbiamo capito che il maggior contenuto informativo è contenuto nelle immagini radiologiche e in un sottoinsieme di informazioni cliniche. Ad esempio l’assenza delle informazioni della TAC causa un degrado delle performance dell’intero sistema, mentre tra le informazioni cliniche e di anamnesi di maggiore importanza sono emerse quelle riguardanti il sesso (maschile), il valore di tempistica di formazione del coagulo, la presenza di pregressa BroncoPneumopatia Cronica Ostruttiva (BPCO), la presenza di diabete di tipo 2, l’evoluzione dell’età (> 50 anni), il valore di interleuchina-6 (IL6) e il valore della ferritina. Notizie e dati preziosi per affrontare future epidemie e future pandemie, ma anche normali emergenze di malattie respiratorie come le polmoniti, con più armi cliniche e predittive e con minori rischi di mortalità”.